
Ghidra PlugIn: "Detecting
unsecure functions“

Lab Report

by

Luca Weist
3084294

submitted to

Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik IV

Arbeitsgruppe für IT-Sicherheit

in degree course

Computerscience (B.Sc.)

First Supervisor: Prof. Dr. Michael Meier
University of Bonn

Second Supervisor: Dr. Matthias Frank
University of Bonn

Sponsor: Daniel Baier
University of Bonn

Bonn, April 22, 2021

Abstract

There are various C coding practices which are considered to be unsafe. Yet these practices are
still very commonly used and some are even included in C standard library functions. Because
of this, there are many programs that contain vulnerabilities caused by the use of these unsafe
practices. To detect programs that fall in this category, a given program is statically analysed and
examined for the usage of a subset of these unsafe coding practices, whether used in a C standard
library function or a custom function.

i

Contents

1 Introduction 2

2 Background 3
2.1 Assembly and binary code . 3
2.2 Reverse-engineering . 6
2.3 Ghidra . 9

3 Specification 12
3.1 General weaknesses . 12
3.2 Libc functions . 15

4 Methodology 16
4.1 Important helper functions . 16

4.1.1 isPointer . 16
4.1.2 getDereferencingInstructions . 16
4.1.3 reachableIf . 16

4.2 Analysers . 18
4.2.1 Null Pointer Dereference . 18
4.2.2 Out-of-bounds Access . 19
4.2.3 Buffer Overflow . 19
4.2.4 Use-after-free and Double Free . 20

5 Summary 22
5.1 Evaluation . 22
5.2 Limitations / Future Work . 23

References 24

List of Figures 28

List of Tables 29

Listing 30

ii

1 Introduction

The European Union Agency For Cybersecurity defines a vulnerability as follows: "The existence
of a weakness, design, or implementation error that can lead to an unexpected, undesirable event
compromising the security of the computer system, network, application, or protocol involved"
[24].

Software is continuously becoming more important in both people’s everyday life [22] as well as
various government and industry sectors of critical importance, such as healthcare [48] and the
car industry [8]. It follows that making sure that software is secure, meaning sufficiently free of
vulnerabilities, is more important than ever.

An example of the harmful effects an exploited vulnerability can have is an incident that occurred
in 2020, in which a patient in a hospital died as a consequence of said hospital being hacked using
a weak spot in the hospital’s software. It was also not the only occurrence of patients having to
be relocated due to a hospital’s software vulnerability. In 2019, 764 healthcare providers were
attacked by similar means. [54]

As of 2020, C is the most popular programming language in the world, and has been so for most
of its existence[67]. It is a highly portable language [58] that is used for a wide range of sectors
of software development. For example, C is the most commonly used language for embedded
systems[23] and the kernel of the three most popular operating systems are written mostly in it[39,
35].

However, according to a study that examined open-source projects written in the 7most popular
programming languages, projects written in C contain almost 50% of all vulnerabilities. They also
have the highest proportion of vulnerabilities of critical severity. [62]

As such, it is clear that there exists a very large amount of vulnerable C programs. A number of
those vulnerabilities are caused by the usage of unsafe functions built into the C standard library,
libc [14], others by the misuse of other built-in functions [15]. In any custom function, an enormous
amount of different weaknesses could potentially be contained [13].

Within this report, an implementation of a module for the reverse-engineering tool Ghidra
[42] is proposed. The purpose of said module is to statically detect a subset of such weaknesses,
specifically ones related to memory handling, within a function of a given C program. Additionally,
it also detects the use of a number of different libc functions. For both of these functions, it is
assumed that said program is not protected by further anti-reverse-engineering mechanisms.

Firstly, chapter 2 introduces the required background knowledge. Then, chapter 3 specifies the
subset of detected weaknesses as well as the detected libc functions. Finally, the implementation of
the module is presented in chapter 4.

2

2 Background

This chapter introduces the fundamentals required to understand the implementation of the
module in chapter 4. First, assembly and binary code are presented. Then, reverse-engineering as a
general concept and in the context of software is established. Lastly, the reverse-engineering tool
Ghidra is quickly introduced before delving into the, for this report, relevant aspects of Ghidra’s
API.

2.1Assembly and binary code

To get an executable program file from source code written in a compiled, high-level language, said
source code will have to be compiled. A rough overview of the compilation process for C source
code compiled with GCC [18] is depicted in figure 1. During the compilation process the original C
source code is first converted into assembly code [69]. The resulting assembly code in turn gets
converted to binary code, also called machine code, which forms the executable program. In reality,
there is often a large amount of binary files that will have to be linked afterwards. However, this
process, as well as the pre-processor operations, are largely irrelevant to the contents of this report,
so they will not be discussed further.

Assembly

Although it serves as an intermediate step between high level language and binary code, assembly
is not just an intermediate representation of the code. It is a full low-level programming language
[31], meaning code written in assembly achieves, in comparison to higher level languages such as
C++ or Java [3], very little abstraction from the details of CPU operations [63]. In fact, assembly
instructions have direct equivalents in machine code [36]. Consequently, writing assembly code is
more similar to writing machine code than programming in a high-level language and acts as an
interface to the CPU. The programmer has direct access to registers, memory built directly into the
CPU [66], and can optimize for specific hardware, amongst other advantages [56].

Figure 1: Compilation model for GCC [69]

On the other hand, assembly’s lack of abstraction also comes with a set of disadvantages. For one,
since higher level languages are closer to everyday English than assembly, assembly is less human-

3

2 Background

readable [56]. Writing assembly code is also a lengthier process, not only for the aforementioned
reason, but also because each instruction has to be manually declared. For comparison, one line
of C code is often equivalent to multiple instructions in assembly, which becomes evident in the
comparison between C code and equivalent assembly code in listings 2.1 and 2.2. The C source
code was compiled with GCC and optimizations turned off, to achieve the most candid comparison
possible. An additional disadvantage is that because of assembly codes proximity to binary code, it
has to reflect the given CPU’s instruction set, which results in assembly code not being portable to
different CPU architectures [56].

The following paragraphs describe assembly syntax. For this, the x64 instruction set is considered,
so some details may not apply to other instruction sets.

In x64, an instruction statement always consist of exactly one instruction, also calledmnemonic or
opcode [50]. Depending on the instruction, the statement also contains zero to three operands, each
divided by a comma [50]. Operands effectively serve as parameters to the instruction. Optionally,
a statement can also have a label attached to it, which will act as a reference to that statements
location in the code [51]. This label can then be used as an operand [51], for instance to jump
to that specific location during execution and continue the execution from there. An instruction
statement can also contain a comment [50]. These serve the same purpose as comments in higher
level languages, namely to provide metadata information.

1 int compare(int a, int b) {

2 if (a > b)

3 return 1;

4 if (a < b)

5 return -1;

6

7 return 0;

8 }

Listing 2.1: An example of a simple C
function that compares two
integers

1 0000000000001149 <compare>:

2 1149: endbr64

3 114d: push rbp

4 114e: mov rbp,rsp

5 1151: mov DWORD PTR [rbp-0x4],edi

6 1154: mov DWORD PTR [rbp-0x8],esi

7 1157: mov eax,DWORD PTR [rbp-0x4]

8 115a: cmp eax,DWORD PTR [rbp-0x8]

9 115d: jle 1166 <power+0x1d>

10 115f: mov eax,0x1

11 1164: jmp 117a <power+0x31>

12 1166: mov eax,DWORD PTR [rbp-0x4]

13 1169: cmp eax,DWORD PTR [rbp-0x8]

14 116c: jge 1175 <power+0x2c>

15 116e: mov eax,0xffffffff

16 1173: jmp 117a <power+0x31>

17 1175: mov eax,0x0

18 117a: pop rbp

19 117b: ret

20 }

Listing 2.2: The function in 2.1, assembled

There is a number of different types of operands. Immediate operands are constant values, such
as numerical values or characters. Register operands directly refer to the contents of a specific

4

2 Background

register by its name. The last type of operand that will be introduced are called memory operands,
which can be addressed in multiple different ways. One way to address memory operands is to
place a memory address immediate within square brackets. Square brackets in assembly behave
like asterisks do in C; they dereference memory addresses, so an address literal in square brackets
is equivalent to the value stored at said address. This method is called direct memory addressing.
Indirect memory addressing is similar, but instead of an address literal a register operand is
dereferenced. Here, the value stored in the register is treated like a memory address. In this
manner, the expression is evaluated as the value stored at the address stored in said register. This
addressment can be supplemented by offsets and can be scaled to access relative memory addresses.
[55]

In figure 2, annotated examples of both the instruction statement structure as well as the different
modes of addressment are shown.

Figure 2: Examples for assembly statements, in Intel Syntax

It is worthy of mention that there are two common assembly syntaxes, AT&T and Intel [71].
In table 1, general comparisons between Intel syntax and AT&T syntax instructions can be seen.
Unless otherwise specified, all assembly code in this report uses the Intel syntax.

Table 1: Incomplete overview of differences between Intel and AT&T assembly syntax [9]

Intel AT&T

Instructions Untagged add Tagged with operand sizes:
addq (q = quadword = 32 bit)

Registers eax, eax, etc. %eax, %ebx, etc.

Immediate 0x100 $0x100

Indirect [eax] (%eax)

Operands
order <Mnemonic> <destination> <source> <Mnemonic> <source> <destination>

5

2 Background

Binary code

Binary code, or machine code, is the language of computers and is usually represented as binary
numbers [64], hence the term binary code also being used to refer to machine code. On execution
of a binary file, the CPU reads the binary stream, interpreting the incoming information as specific
operations. Since it is hardly human-readable, it is extremely uncommon for programmers to
actually write in binary code [64]. Because of this machine code is almost purely a generated
language.

The obscurity of machine code is visualised in listing 2.3, which shows the compiled machine
code of the functions in listings 2.2 and 2.1.

1 Binary representation:

2 11110011 00001111 00011110 11111010 01010101 01001000 10001001 11100101 10001001

3 01111101 11111100 10001001 01110101 11111000 10001011 01000101 11111100 00111011

4 01000101 11111000 01111110 00000111 10111000 00000001 00000000 00000000 00000000

5 11101011 00010100 10001011 01000101 11111100 00111011 01000101 11111000 01111101

6 00000111 10111000 11111111 11111111 11111111 11111111 11101011 00000101 10111000

7 00000000 00000000 00000000 00000000 01011101 11000011

8

9 Hexadecimal representation:

10 F3 0F 1E FA 55 48 89 E5 89 7D FC 89 75 F8 8B 45 FC 3B 45 F8 7E 07 B8 01 00 00 00

11 EB 14 8B 45 FC 3B 45 F8 7D 07 B8 FF FF FF FF EB 05 B8 00 00 00 00 5D C3

Listing 2.3: The function in 2.1, 2.2 compiled to binary code

2.2Reverse-engineering

This section introduces the concept of reverse-engineering in general, whereas the following one
introduces the reverse-engineering tool Ghidra specifically.

Generally speaking, reverse-engineering describes the process of deconstructing or analysing a
finished product in order to gather information about its design [38]. For instance, if one wanted
to know more about how a specific CPU worked, one could disassemble it and observe what
kinds of parts were used in its production and how they are organized. In the realm of software,
reverse-engineering commonly refers to the act of analysing a given program to gain information
about concepts it uses as well as its implementation [53], often with the goal of reconstructing the
original source code as exact as possible [60]. Use cases for reverse-engineering are, amongst other
things, malware analysis [37] or as a tool for learning about programming concepts and designs
[57].

There are two typical ways to analyse a compiled program. The first one, static analysis, refers
to the examination of the actual code. Through static analysis, possible values for the program
variables can be deduced and every possible execution path considered. However, often it is not
possible to work out any concrete values and thus execution path, especially if the program takes
input from a source that can not be controlled by the reverse-engineer. The other kind of analysis,

6

2 Background

dynamic analysis, enables the recording of specific values by executing the program and monitoring
memory and instructions for the duration of its execution. Dynamic analysis conversely only covers
one execution path at a time. The combination of those two approaches is called hybrid analysis.
[55]

Some prevalent static analysis techniques are presented below.

Basic blocks

Basic blocks are blocks containing straight sequences of code that do not contain any outflowing
branches, aside from at their exit point. This implies that the only conditional in the block, if any,
must be at the very end of the block. There also must not be any inflowing branches to any where
in the basic block, with the exception of the entry. [27]

Single static assignment form

During program execution, there is a multitude of different execution paths that might be traversed.
Because of this, there often are multiple possible values for any variable at any given point of
execution. However for static analysis knowing all possible values of a variable, especially at a point
of potential vulnerability, is important. Single static assignment (SSA) form aids in simplifying the
process of gathering all possible values of a variable. [55]

The core principle behind SSA is that each variable may only be assigned exactly once. SSA form
is achieved by replacing every reassignment of a variable with the assignment of a new, generated
variable. Further, the generated variables must still be able to be traced back to their respective
original variable. [55]

Often, the original variable will be reassigned differently in two or more execution paths which
end up being merged. For all such cases, the at that point different possible values must be merged
as well. For this, the phi-function is introduced to SSA. The phi-function takes all possible values
as input and assigns it to yet another generated variable. An example of simple SSA syntax can be
seen in 3. [55]

Figure 3: A simple slice of an execution path. On the left in normal syntax; on the right, the syntax is
transformed to SSA [55]

7

2 Background

Forward- and backward slicing

A variable is considered a descendant of another value after said value, or another descendant of
said value, serves as input to it. Forward slicing serves to get all the descendants of a given value or
variable. This is done by checking all relevant assignments. Analogously, backward slicing allows
for the identification of the ancestors of a value. This in turn also allows to get the original source
of a value, for example to check whether said value stems from a trusted source. [55]

There are various software tools that aid the user in reverse-engineering [4], one of which,
Ghidra, will be individually discussed in the following section. Many of those tools share mutual
functionalities [40, 61, 33]. A major one is presented below.

Disassembler and Decompiler

An assembler is a simple compiler, analogous to compilers for higher level languages, that translates
assembly code to machine code [65]. Inversely, a disassembler converts machine code back into
assembly [32]. A decompiler is to a compiler what a disassembler is to an assembler; a decompiler
translates machine code back into a high level language [59], for example C.

Disassembler and decompiler are useful since machine code is not appropriately accessible to
most programmers [2]. Being able to view the code in a more human-readable way potentially
speeds up the static analysis, e.g. working out the actual functionality of a program or function.
This is all the more the case with decompilers over disassemblers, since the large majority of
programmers is more familiar with higher level languages [67].

However, both decompiler and disassembler can only approximate the original source code in
most cases. This is in part a result of compilers performing optimizations on the source code during
compilation, to improve execution time and memory usage [29].

Because of this multiple different lines of code can result in the same compiled machine code,
making it impossible for the decompiler or disassembler to differentiate between those lines of code.
Those originally different lines will be identical in the new, decompiled code. This becomes evident
in listings 2.4 to 2.7, where an example of two different functions and the disassembled code
returned by objdump [19] for each of those functions is shown. For both functions, the objdump
output, which has been stripped of its binary code, is identical. The binary was compiled with GCC
an the -O3 flag set. The -O3 flag maximizes the amount of optimizations the compiler carries out
[18].

8

2 Background

1 int function1() {

2 int a = 1;

3 int b = 2;

4 int numbers[10];

5

6 for (int i = 0; i < 10; i++)

7 numbers[i] = a + b;

8

9 return a + b;

10

11 int d = 3;

12 return a + d;

13 }

Listing 2.4: An example of a function

1 int function2() {

2 int a = 1;

3 int b = 2;

4

5 return a + b;

6 }

Listing 2.5: An example of a different but
similar function

1 0000000000001140 <function1>:

2 1140: endbr64

3 1144: mov eax,0x3

4 1149: ret

5 114a: nop WORD PTR [rax+rax*1+0

x0]

Listing 2.6: The disassembled code of the
function in 2.4

1 0000000000001150 <function2>:

2 1150: endbr64

3 1154: mov eax,0x3

4 1159: ret

5 115a: nop WORD PTR [rax+rax*1+0

x0]

Listing 2.7: The disassembled code of the
function in 2.5

Yet another reason as to why decompilers are unable to restore the original source code is the
loss of semantic information. Variable names, for instance, are lost after compilation [70].

2.3Ghidra

Released to the public as open source project in 2019, Ghidra is a reverse-engineering tool developed
by the National Security Agency [42].

In figure 4 Ghidra’s standard view can be seen, which is shown once a project is opened. As men-
tioned in the previous section, Ghidra contains an integrated disassembler as well as a decompiler,
both of which execute upon importing a binary file. The decompiler window can be seen on the
far right, with the disassembled code window, here called Listing, next to it. Ghidra offers many
additional convenience features that aid in exploring both versions of the code. For example, there
is the Program Trees window, which displays all segments of the disassembled file and allows the
user to skip to any of them with the click of a button. Similarly, the Symbol Tree window holds
sorted lists of all imports, exports, functions, labels, classes and namespaces. This window also
contains a search function. Both of these windows can be seen in figure 4 on the left hand side.

9

2 Background

Figure 4: Ghidra’s standard project view

Another major feature of Ghidra is the ability to extend its functionality through custom Java
plugins [49, 43]. Some major aspects of its API are introduced below.

P-code

P-code is Ghidra’s proprietary register transfer language, which aids as a strong tool to simplify
further static analysis. Two ways how p-code achieves this are described below. [45]

For one, p-code allows for static analysis to be largely independent of the respective instruction
set. Each instruction of every CPU instruction set supported by Ghidra is mapped to a sequence of
p-code operations. These operations’ purpose is to represent every operation that occurs during the
execution of the respective instruction. For example, the ADD instruction in the x86 instruction set
is not only mapped to a mathematically equivalent p-code operation, but also to other operations
that each set one of the flags that are set upon execution of ADD. For all p-code operations, "parts
of the processor state [serve] as input and output variables". These variables are introduced in the
next section. [45]

Additionally, when using the API, the p-code is automatically analysed and then optimized. The
directly mapped operations, before any optimizations are performed, are called raw p-code. [45]
In its optimized form, the p-code is transformed into static single assignment form [7]. Beyond
that, operations that have no effect are excluded, and some operations are replaced by fewer, more
complex ones.

The most relevant example for such operations is MULTIEQUAL, which serves as a phi operation
and merges different execution paths [46].

10

2 Background

Varnode

In and of itself, a varnode purely represents a memory or register location, and consists of three
components: the base address space, the offset and the varnode’s size. By being used as input or
output to a p-code operation, as mentioned above, they might be interpreted to be either an integer,
a floating point number or a Boolean value. [45]

Through the API, further information about a varnode can be recalled. There are, for example,
methods to get all descendants of a varnode, or to get the corresponding high-level variable, if it
exists. [47]

Other important features

Ghidra’s API supports, as mentioned in section P-code, static single assignment form. Beyond
that however, functions to directly support back- and forward-slicing [41] as well as the automatic
detection and retrieval of basic blocks are provided [44] as well.

11

3 Specification

First, general weaknesses that the module detects are introduced. Afterwards, the included libc
[28] functions are defined.

3.1General weaknesses

In this section, the general weaknesses that the module detects are defined. When choosing what
weaknesses are included in this subset, two factors are primarily considered. First, the score
assigned to each weakness by the CWE [10], which attempts to describe its prevalence and severity
[11]. Second, because of the limited scope of this report, the ease of implementation of an algorithm
detecting the respective vulnerability is also considered.

Further, a differentiation is made between potentially and inherently unsafe functions. For all
weaknesses considered in this report, the deciding factor of whether a function is potentially or
inherently unsafe stems from where the function input is derived from. If the relevant function
input is passed as a parameter the function is considered only potentially unsafe, since the calling
function can handle all necessary parameter checks. If the function input is derived from user
input within the function, e.g. through the command line or from a file belonging to the user, there
is no way for the calling function to sanitize it. Therefore, the function is considered inherently
unsafe. To illustrate this idea, an example of two equivalent functions, one potentially, the other
inherently unsafe, can be seen in listing 3.1.

1 void potentialOutOfBoundsRead(char* buffer, int n) {

2 printf("%c", buffer[n]);

3 }

4

5 void inherentOutOfBoundsRead(char* buffer) {

6 int index;

7 scanf("%i", &index);

8

9 printf("%c", buffer[index]);

10 }

Listing 3.1: Two functions with an Out-of-bounds Read vulnerability, one potential, the other inherent

Weaknesses stemming from insufficient restrictions of operations on a buffer take up the largest
proportion of the subset. Such buffer errors are the most common type of weakness in C programs
[62]. Additionally, the class of weaknesses containing such errors were also assigned the highest

12

3 Specification

score by the CWE in 2019 [12] and remained in the top five in 2020 [11]. This is, in part, because the
scores assigned by the CWE consider the prevalence of the respective weakness [12, 11]. However,
buffer errors are also of critical severity, as they violate all three components of the CIA security
triad [5]. For example, they often cause memory corruption, allow the unauthorized reading of and
writing to memory and, in some cases, can even lead to the execution of malicious code [21].

Another class of weaknesses included is related to the otherwise erroneous handling of pointers.
One of the weaknesses in this class is the dereference of potential NULL pointers. Also a common
type of vulnerability [12], dereferencing a NULL pointer will cause undefined behaviour, often
prematurely ending execution [52] or, in rare cases where NULL is interpreted as memory address
0, cause the execution of code [16]. Use After Free and Double Free are considered part of this class
as well.

In table 2, each specific type of vulnerability the module detects, both inherently and potentially
unsafe implementations, is listed.

Table 2: List of general weaknesses that the module detects, information taken from CWE [10]

Weakness name CIA Vio-
lation

Description

Out-of-bounds
Read

C Memory outside of the buffer is read

Out-of-bound
Write

IA Memory outside of the intended buffer is
written to

Classic Buffer
Overflow

CIA A larger amount of data is written into a
buffer than its size

Use of Out-of-range
Pointer Offset

CIA Performing arithmetic on valid pointer,
pointing to invalid position

NULL Pointer
Dereference

CIA Dereferencing memory that does not point
anywhere

Use After Free CIA Dereferencing memory after it has been
deallocated

Double Free CIA Attempting to deallocate already
deallocated memory

An example for Out-of-bounds Read can be seen in the previous listing, 3.1. Out-of-bounds
write is perfectly analogous, of course with the difference that the memory is written to instead of
read. The same goes for Use of Out-of-range Pointer Offset, except that instead of a straightforward
memory access as in Out-of-bounds Read, pointer arithmetic is performed first.

A basic example of a function with a Null Pointer Dereference weakness is depicted in listing 3.2
The function pointerDereference simply dereferences the pointer it received as a parameter without
any further checks. Therefore, if the variable ptr is NULL, this function will cause undefined
behaviour. This can be avoided by a simple NULL check beforehand, where the printf statement is
only executed if ptr is not NULL.

13

3 Specification

1 void pointerDereference(int* ptr) {

2 printf("%i This is potentially unsafe", *ptr);

3 }

Listing 3.2: Function with potential Null Pointer Dereference vulnerability

Since there is no way in C to validate that memory that a pointer points to has been deallocated
using the free function [17, 68], the module only detects the Use After Free and Double Free
weaknesses if all relevant free instructions, as well as the dereference in the case of Use After free,
occur within the function. These weaknesses can arise from mistakes made in the control flow of a
function. A simple exemplary case of such a mistake can be seen in listing 3.3.

1 void freeVulnerabilities(int a, int b, int c, int* ptr) {

2 if (a < 10)

3 free(ptr);

4 if (b > a)

5 free(ptr);

6 if (c == 100)

7 printf("%i", *ptr);

8 }

Listing 3.3: Function with control flow error, resulting in both potential Use After Free and potential
Double Free vulnerability

In listing 3.4, an instance of a function with an inherent Buffer Overflow vulnerability is shown.
This example portrays a system 32 bit, 4 byte addresses. It is however completely applicable to 64
bit systems as well, with the exception of course the base pointer and addresses being twice the
size. A buffer with a fixed size of 8 byte is declared, but user input is directly copied into it without
any size checking whatsoever, so a potential attacker could input a tailored string to overwrite
not only the previously declared integer variables, but also the return address saved in the stack
frame. By overwriting the return address with the address of another function, an attacker can
gain control of the control flow of the program or use other functions that are known to contain
other vulnerabilities. This process is illustrated in figure 5. Since scanf [20] is used in listing 3.4,
an attacker has to first fill the entire buffer, 8 bytes, followed by the two integer variables, 4 bytes
each, and finally the saved base pointer, 4 bytes in this example, before he can overwrite the return
address. As input string, a sequence of 20 random ASCII characters followed by the address of the
function the attacker wishes to execute can be used, as each ASCII character is exactly one byte in
size [1].

1 void bufferOverflow() {

2 int a = 0, b = 1;

3 char buf[8];

4

5 scanf("%s", buf);

6

7 ...

14

3 Specification

8 }

Listing 3.4: Function with Buffer Overflow vulnerability

Figure 5: A representation of the stack frame of the function in 3.4, before and after execution of line 5

This example serves to visualize an attack using a common buffer error. In most real world
scenarios, there are multiple mechanisms preventing this specific type of attack, such as the stack
canary [30] and Address Space Layout Randomization (ASLR) [34].

3.2 Libc functions

The libc functions that the module detects are a subset of the top 30 most used functions that
contain vulnerabilities according to the paper ‘Detection of security vulnerabilities in C language
applications‘ [6]. Additionally, the gets function is also detected, as it is considered to be inherently
unsafe by the CWE [14]. All considered libc functions can be seen in table 3, along with their
respective vulnerability.

Table 3: List of libc functions that the module detects

Vulnerability Functions

Format string vulnerability fprintf, printf, sprintf, snprintf

Buffer and memory error gets, strlen, memset, memcpy, malloc, strcpy,
memmove, atoi, strdup, calloc, strchr

15

4 Methodology

4.1 Important helper functions

Prior to presenting the analysis structures, some of the utility function are quickly introduced. All
of these can be found in the GitLab repository of this lab [25].

4.1.1 isPointer

The function isPointer receives a variable as input and returns an integer that indicates whether
said variable is a pointer. It is possible for isPointer to return a value indicating that nothing about
the variable could be inferred.

A noteworthy source of false negatives in isPointer is that if the variable is multiplied anywhere
within the function it is contained in, a value indicating that said variable is not a pointer is
returned. The decision to include this check was made for two reasons. For one, there are only
very limited cases where multiplying an address could be desired. The other reason is that, due
to a specific check, the rate of correctly determined variables rises, even for variable that are not
multiplied. This multiplication check is only relevant in cases where none of the more definitive
checks imply anything about whether the given variable is a pointer.

4.1.2 getDereferencingInstructions

getDereferencingInstructions takes a variable as parameter, returning a set of all p-code operations
that dereference a varnode containing the given variable. For this report, a variable is considered to
be contained in a varnode if the varnode is returned by a forward-slice performed on the variable.

4.1.3 reachableIf

The purpose of reachableIf is to determine whether a specific p-code operation is reachable from the
function entry point, given various conditions. It is a recursive function that receives a basic block,
a p-code operation and a variable as input, as well as two functions. On its initial call, the passed
in basic block has to be the first basic block in the function that is being analysed. If this is not the
case, its behaviour is undefined. There are various other parameters for reachableIf, all of which
however are purely relevant to its implementation details.

The first basic block of a function is always reachable. Because of this, it is marked as vulnerable.
Upon entering reachableIf, the variable is checked for relevant reassignments within the current
block. This first check is implemented by means of the function parameter reassignmentCondition.

16

4 Methodology

reassignmentCondition

Implementations for this function receive a basic block as well as a variable and a p-code operation
as input. It then iterates over all the p-code operations contained within the passed in basic block,
returning the integer value 1 if the value of the variable is changed in a way that would make
passing through the basic block on execution unsafe. It returns -1 if the variable is instead changed
so that the basic block is inherently safe. 0 is returned if the value of the variable is not, or at least
not in any relevant way. The considered modifications of the variable here are subtraction, addition,
multiplication, division and direct reassignment. In case of the phi operation MULTIEQUAL [45],
see P-code and Single static assignment form, reassignmentCondition applies the same checks to
each argument to MULTIEQUAL. If the current block also contains the p-code instruction tested
for reachability, the order of the reassignment and the p-code is considered.

The definitions of safe, unsafe and irrelevant changes depend on the implementation of the
function passed to reachableIf as reassignmentCondition. An example for such an implementation is
the one for the Null Pointer Dereference analyser. Here, in case of a Null assignment to the variable,
1 would be returned. If however a constant value unequal to 0 would be assigned to it, it would be
guaranteed to be not Null for all following basic blocks, at least up until the next reassignment.
Because of this, -1 would be returned, indicating that this basic block is inherently safe.

For the sake of the scope of this lab, value tracing is only performed in case of direct reassignment.
Otherwise, only constant checks are applied, returning 1 for non-constant modifications.

After the reassignment check, the blocks that the current one can flow into are iterated over. On
each of them, reachableIf is called recursively. The information whether the previous block was
vulnerable is passed in. If so, the now current block is considered vulnerable as well. This can, as
was just explained, change after the reassignmentCondition is checked for the new block.

However, guard statements at the end of the previous block can cause the new one not to
be vulnerable, even if the previous one was. This is accounted for by previously executing the
edgeCondition.

edgeCondition

The second of the two aforementioned functions is edgeCondition, which in turn takes two basic
blocks as parameter, in addition to a variable. Essentially, this function serves to check if the first
basic block’s exit point can possibly flow into the other’s entry point under certain conditions. The
considered conditions, in analogue to reassignmentCondition depend purely on the implementation
of the function passed to reachableIf. In order to achieve this, edgeCondition analyses the outflow
condition of the first block. This is done by getting the flag or Boolean varnode that is used as an
argument to CBRANCH [45], then analysing its definition. If the guard statement prevents the
first block from flowing into the other, false is returned. Otherwise, edgeCondition returns true. For
example, the function leadsToIfNull is passed to reachableIf as edgeCondition for the Null Pointer
Dereference analysis. leadsToIfNull returns false only if the guard statement guarantees the the
passed in variable can not be Null for the first block to flow into the other.

Similarly to reassignmentCondition, only very basic value tracing is performed, once again due
to scope. If a parameter variable is compared to a varnode that is itself entirely made out of

17

4 Methodology

parameters, the analyser assumes this to be a valid guard statement. The behaviour is analogous
for locally declared variables.

Using these two helper functions, reachableIf recursively iterates over all possible paths, returning
a Boolean value indicating whether the passed in basic block is reachable from the function entry
point with the variable in an unsafe state, where either no guard statements prevent the function
from flowing into the relevant block or where it was reassigned in such a way that the guard
statements become ineffective. A class variable defines the calculation depth, defining how many
times a block may be visited.

The various implementations of edgeCondition and reassignmentCondition will not be presented.
All of them follow the respective structure explained above however, only the conditions being
checked changing based on the implementation. As mentioned before, the implemented versions
can be found in [25].

4.2Analysers

Prior to reading this section, it is recommended to read section Important helper functions,
especially the subsection reachableIf and its sections edgeCondition and reassignmentCondition.
These helper function’s functionality will not be explained within the descriptors of the analysers.

In this section, the analysis structure used for each vulnerability is presented. Each function is
individually analysed. This is the case for all analysers described below.

4.2.1Null Pointer Dereference

The Null pointer dereference analysis attempts to detect any dereference of what is, at runtime,
potentially a Null pointer.

At the start of the analysis, each of the local variables of the current function is assigned a value.
This value is the corresponding return value of isPointer and thus describes whether the variable is
a pointer or not. After the assignment has finished, the analyser iterates over every dereference
contained in the given function, retrieved by getDereferencingInstructions.

For each dereference, the dereferenced varnode is tested for contained variables by performing
a backward slice on it. All of the variables returned by the backward slice are then added to a
collection. If it is empty, the current iteration is concluded. Otherwise, the collection is then filtered
further by removing the variables irrelevant for the rest of the analysis. If the collection contains
one or more variables that have been inferred to be pointers, all non-pointers are removed from the
collection. Additionally, if the user chooses the option to prefer false negatives, each of the variables
for which isPointer could not infer whether it is a pointer are removed as well. The possible states
that the collection can result in by following these rule are as follows: The collection includes only
non-pointers and ’unknowns’, only pointers and ’unknowns’, only pointers or only ’unknowns’.

Once the collection has been filtered, each included variable is passed into reachableIf, along with
the corresponding dereference operation and basic block.

18

4 Methodology

4.2.2Out-of-bounds Access

This analyser’s purpose is to detect any access, whether read or write, to a memory location on the
heap that makes use of an offset that might be negative or larger than the space allocated for the
given location.

Similarly to the beginning of the Null Pointer Dereference analyser, every variable is assigned
a value which indicates whether it is a pointer. This is, once again, achieved using isPointer. The
analyser then iterates over all dereferences.

For Out-of-bounds Access’s analyser, there is an early special case which does not require using
reachableIf. If all of the variables contained in the current dereference are guaranteed to not
be pointers, the dereference is considered a vulnerability by default and the analysis for this
dereference is finished. It also does not matter in this special case whether the variables stem from
within the function or were passed in as parameters, the dereference is considered as inherently
vulnerable either way. The reasoning for this choice is that numeric variables, for example an
integer, should not be used to store addresses, instead using a pointer.

If this special case does not apply, all pointers and ’unknowns’ are both inserted into a new
collection. This collection is then iterated over, treating the current variable of each iteration as
the pointer, the base of the current dereference. All other variables contained in the collection are
treated as the offset. If the user chooses the option to prefer false negatives, each offset variable
is tested by means of reachableIf individually. As long as any of them satisfies all conditions, the
whole current set of offset variables is considered safe. If however the user chooses to prefer false
positives, all offset variables are passed into reachableIf at once, using yet another collection. If this
method is chosen, the varnodes that contain exactly these variables will be tested. A varnode, that,
for example, contains only two out of three offset variables will be considered irrelevant for the
sake of simplifying the analysis, at the cost of not detecting various edge-cases.

Different from the Null Pointer Dereference analyser, two runs of reachableIf are required for
each set of offset variables (or respectively per variable in each set, depending on what option the
user chooses). The first run checks whether the offset can potentially be negative, thus trying to
access memory space before the location that is being pointed to. The second one analogously
tests whether the offset is likely to be a value that is larger than the space allocated to the pointer.
Because of these two separate runs, two implementations for each of the two helper functions are
necessary.

4.2.3Buffer Overflow

The Buffer Overflow analyser detects cases where an attempt is made to store more data into a
buffer than its size allows. It is firmly based on Out-of-bounds Access’s analyser.

On initiating the analysis, this analyser functions in the same manner as the two previous ones
by gathering all dereferences in the current function and determining which of the local variables
are pointers. After those first two steps are completed, all LOAD [45] instructions are removed
from the collection storing the dereferences. This way, only the STORE [45] instructions remain
for the further analysis. The collection of relevant dereferences is filtered once more however. All

19

4 Methodology

of the remaining instructions that are not contained within a loop or whose offset is not modified
during iteration are removed.

After the collection of dereferences has been filtered, the rest of the analysis is fully equivalent
to that of the Out-of-bounds Access analyser, with the exception that the offset is only tested for
possibly being too large. A negativity test is not performed, since Buffer Underflow is technically a
different class of vulnerability from Buffer Overflow.

4.2.4Use-after-free and Double Free

The Use-after-free analyser detects any dereference of a pointer that might occur after the location
it points to has been deallocated. Analogously, the Double Free analysis detects additional dealloca-
tions. Both of these are rudimentarily implemented, as logically mutually exclusive statements are
not considered in the analysis. If, for example, there are two if statements in a function that can
not possibly both be true, the paths that visit both of them are still considered as valid paths. An
example for such a function can be seen in listing 4.1.

1 void doubleFree(int * a, int b) {

2

3 if (b > 100) {

4 printf("b was large %i", *a);

5 free(a);

6 }

7

8 if (b < 10) {

9 printf("b was small %i", *a);

10 free(a);

11 }

12 }

Listing 4.1: An example for a function with two logically mutually exclusive statements

Both analysers are methodically very similar to each other. At the beginning of the analysis, all
p-code operations contained in the current function are inserted into a list, which is then filtered
by operators. All operations that do not use the CALL [45] operator are removed, only function
calls remaining in the list. The remaining items are then iterated over, each being checked for the
function they call. Only if the called function is a library function and called "free" does the current
item remain in the list. Otherwise, it is removed.

Once the list has been filtered, each variable of the function is iterated over. In each iteration, the
aforementioned list is filtered once again to only include the function calls that take the current
variable as its first parameter. An additional collection is created, containing all operations that
reassign the current variable. In the case of the Use-after-free analyser, yet another collection is
created, this one containing all dereferences of the variable.

Both of these analysers are different from the other analysers presented in this report in that they
do not make use of reachableIf. Instead, they use a conceptionally similar function with a slightly

20

4 Methodology

differing implementation. The recursive traversal of the paths is implemented in the same way. The
function however does not take an edgeCondition or a reassignmentCondition as parameter. Instead
it simply calls itself on all outflowing blocks. Upon entry in this function, which, on its initial call,
receives all created collections as well as the first basic block in the function as input, all operations
in the basic block are iterated over. If the current operation deallocates the variable, the variable is
marked as such. If it is reassigned, this mark is removed again.

In the case of Double Free, if the variable is deallocated within the current operation while
already being marked as deallocated, the function returns true. This indicates that the function
contains a Double Free vulnerability for the current variable. For Use-after-free’s analyser, the
function instead checks whether the operation dereferences the variable while being marked as
deallocated. If so, true is returned.

21

5 Summary

This report presents a static approach for the detection of various vulnerabilities identified by the
CWE, all of which have been implemented in the course of the lab. The implementation is realized
as a plug-in for the reverse-engineering tool Ghidra, thus also making strong use of its API. Namely,
the vulnerabilities detected are Null Pointer Dereference, Out-of-bounds Access, Buffer Overflow
as well as Use-after-free and Double Free. For each of these vulnerabilities, the methodology used
in their respective detection algorithms is presented. In addition to detecting the aforementioned
vulnerabilities, the module presented in this report also detects the usage of various libc functions.
These libc functions are a subset of the most used libc functions containing vulnerabilities, accord-
ing to the paper ‘Detection of security vulnerabilities in C language applications‘ [6]. In addition
to these, the function gets is detected as well.

Each case of a detected vulnerability (with the exception of Use-after-free and Double Free), as
well as each libc function, is assigned into a group, either being potentially or inherently unsafe. The
definitions of these groups has been simplified for the sake of the scope of this lab. A vulnerability
is inherently unsafe if the vulnerable variable is locally declared. Vice versa, the vulnerability is
potentially unsafe if the variable stems from outside the function, being passed in as a parameter.

A short evaluation of the analysis is given below. Afterwards, some of the major limitations of
the implementations are explained.

5.1 Evaluation

To give a rough intuition about the plugins rate of successful detections, a small C program is
analysed. The results can be seen in table 4 below. In case different results are returned if the
option to prefer false negatives is chosen, the results with the better rate of correct detections are
reflected in the table.

Table 4: Results of analysing eval.c [26]

Vulnerability Amount of correctly detected functions Amount of falsely detected functions

Null Pointer Dereference 10 / 12 0

Out-of-bounds Access 17 / 20 1

Buffer Overflow 7 / 10 1

Double Free and Use-after-free 4 / 5 0

22

5 Summary

The functions contained in the program were not written with the plugin’s implementation in
mind - meaning, they do not actively play into the plugin’s strength or weaknesses. However, it
should be mentioned that the majority of the functions are kept relatively short and simple.

5.2 Limitations / Future Work

Due to the limited scope and available time for this lab, a number of important aspects have only
been implemented rudimentarily, if at all.

The most relevant one is value tracing which, in the large majority of cases, has only been
implemented in a basic fashion. As explained in Methodology, to check what variables a Varnode
"contains", a backward slice is performed. However, the returned set does not contain any infor-
mation about how these variables come together to form the varnode. Therefore, any checks that
make use of at least one varnode are at best approximated. Improving the value tracing where it is
implemented and implementing it where it is not would inherently lead to far stronger detection
results.

In its current implementation, all functions contained within the program are iterated over, each
being individually analysed. Another valuable improvement to the analysis would be to instead
recursively walk over all functions, analysing each function before its calling functions. In addition
to this, analysis of the possible return values and modifications of parameters would be performed
as well. This would then allow for the better detection of vulnerabilities in calling functions, vastly
improving reassignmentCondition. Take, for example, a function that contains a reassignment to a
variable using the return value of another function as input. Only if the called function has been
inferred to possibly return 0 will the reassigned variable now be cause for a potential Null pointer
dereference, at least until the next reassignment.

Of course, as is virtually inherently the case for this type of analysis, there is a vast amount of
smaller fixes and improvements that can be applied to the analysis concepts used.

23

References

[1] Aberdeen, Godred Fairhurst - University of: ASCII. url: https://erg.abdn.ac.uk/users/
gorry/eg2069/ascii.html (visited on 01/04/2021).

[2] BBC: Instructions. url: https://www.bbc.co.uk/bitesize/guides/z2342hv/revision/2#:
~:text=Languages%20can%20be%20defined%20as,mechanical%20workings%20of%20the%20CPU.

(visited on 12/31/2020).

[3] BBC: Types of programming languages. url: https://www.bbc.co.uk/bitesize/guides/z4cck2p/
revision/1 (visited on 01/02/2021).

[4] Bhat, Omkar ; Yeprem, Zoya ; Lingesh, Vijay: Comparison of 3 Reverse Engineering Tools. 2019.

[5] bmcblogs: What is the CIA Security Triad? url: https://www.bmc.com/blogs/cia-security-
triad/ (visited on 01/04/2021).

[6] Boudjema, El Habib et al.: “Detection of security vulnerabilities in C language applications”.
In: Security and Privacy 1.1 (2018), e8. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/spy2.8. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.8.

[7] Bulazel, Alexei: Working With Ghidra’s P-Code To Identify Vulnerable Function Calls. url:
https://www.riverloopsecurity.com/blog/2019/05/pcode/ (visited on 04/04/2021).

[8] Camacho, Claudio M.: How car manufacturers are becoming software companies. url: https:
/ / www . tuxera . com / blog / how - car - manufacturers - are - becoming - software - companies/

(visited on 12/29/2020).

[9] College, Andrew Clifton - Fullerton: Intel vs AT&T syntax. url: http://staffwww.fullcoll.
edu/aclifton/courses/cs241/syntax.html (visited on 01/03/2021).

[10] CWE. url: https://cwe.mitre.org/index.html (visited on 12/29/2020).

[11] CWE: 2020 CWE Top 25Most Dangerous Software Weaknesses. 2020. url: https://cwe.mitre.
org/top25/archive/2020/2020_cwe_top25.html (visited on 11/21/2020).

[12] CWE: CWE - 2019 CWE Top 25 Most Dangerous Software Errors. 2019. url: https://cwe.
mitre.org/top25/archive/2019/2019_cwe_top25.html (visited on 11/21/2020).

[13] CWE: CWE VIEW: Software Development. 2020. url: https : / / cwe . mitre . org / data /
definitions/699.html (visited on 12/04/2020).

[14] CWE: CWE-242: Use of Inherently Dangerous Function. 2020. url: https://cwe.mitre.org/
data/definitions/242.html (visited on 12/04/2020).

[15] CWE: CWE-676: Use of Potentially Dangerous Function. 2020. url: https://cwe.mitre.org/
data/definitions/676.html (visited on 12/04/2020).

[16] CWE: NULL Pointer Dereference. url: https://cwe.mitre.org/data/definitions/476.html
(visited on 01/04/2021).

24

https://erg.abdn.ac.uk/users/gorry/eg2069/ascii.html
https://erg.abdn.ac.uk/users/gorry/eg2069/ascii.html
https://www.bbc.co.uk/bitesize/guides/z2342hv/revision/2#:~:text=Languages%20can%20be%20defined%20as,mechanical%20workings%20of%20the%20CPU.
https://www.bbc.co.uk/bitesize/guides/z2342hv/revision/2#:~:text=Languages%20can%20be%20defined%20as,mechanical%20workings%20of%20the%20CPU.
https://www.bbc.co.uk/bitesize/guides/z4cck2p/revision/1
https://www.bbc.co.uk/bitesize/guides/z4cck2p/revision/1
https://www.bmc.com/blogs/cia-security-triad/
https://www.bmc.com/blogs/cia-security-triad/
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spy2.8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spy2.8
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.8
https://www.riverloopsecurity.com/blog/2019/05/pcode/
https://www.tuxera.com/blog/how-car-manufacturers-are-becoming-software-companies/
https://www.tuxera.com/blog/how-car-manufacturers-are-becoming-software-companies/
http://staffwww.fullcoll.edu/aclifton/courses/cs241/syntax.html
http://staffwww.fullcoll.edu/aclifton/courses/cs241/syntax.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/476.html

References

[17] die.net: free(3) . Linux man page. url: https://linux.die.net/man/3/free (visited on
01/04/2021).

[18] die.net: gcc(1) - Linux man page. url: https : / / linux . die . net / man / 1 / gcc (visited on
12/31/2020).

[19] die.net: objdump(1) - Linux man page. url: https://linux.die.net/man/1/objdump (visited on
12/31/2020).

[20] die.net: scanf(3) - Linux man page. url: https://linux.die.net/man/3/scanf (visited on
01/04/2021).

[21] Du, Dr. Wenilang: Computer Security: A Hands-on Approach. CreateSpace, 2017.

[22] Edwards, Greg: Technology in Everyday Life. url: https://www.jfg-nc.com/technology-in-
everyday-life/ (visited on 12/29/2020).

[23] EETimes, embedded: 2019 Embedded Markets Study. 2019. url: https://www.embedded.com/wp-
content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf (visited on
12/04/2020).

[24] Enisa: Glossary - Enisa. url: https : / / www . enisa . europa . eu / topics / threat - risk -

management/risk-management/current-risk/risk-management-inventory/glossary (visited
on 12/29/2020).

[25] Git Repository of the plugin. url: https://git.cs.uni-bonn.de/baierd/pg_ghidra_plugin
(visited on 04/20/2021).

[26] Git Repository of the plugin. url: https://git.cs.uni-bonn.de/baierd/pg_ghidra_plugin/-
/tree/master/Praktischer%20Teil (visited on 04/20/2021).

[27] GNU: Basic blocks. url: https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html (visited
on 04/05/2021).

[28] GNU: The GNU C Library Reference Manual. url: https://www.gnu.org/software/libc/
manual/html_mono/libc.html (visited on 04/03/2021).

[29] Guru99: Phases of Compiler. url: https://www.guru99.com/compiler-design-phases-of-
compiler.html (visited on 12/31/2020).

[30] Hat, Huzaifa Sidhurwala - Red: Security Technologies: Stack Smashing Protection. 2018. url:
https://access.redhat.com/blogs/766093/posts/3548631 (visited on 01/04/2021).

[31] Hope, Computer: Assembly Language. url: https://www.computerhope.com/jargon/a/al.htm
(visited on 01/02/2021).

[32] Hope, Computer: Disassembler. url: https://www.computerhope.com/jargon/d/dissembl.htm
(visited on 12/30/2020).

[33] InfoSec: The Basics of Ida Pro. url: https://resources.infosecinstitute.com/topic/basics-
of-ida-pro-2/ (visited on 12/30/2020).

[34] Kapersky: Address Space Layout Randomization (ASLR). url: https : / / encyclopedia .

kaspersky . com / glossary / address - space - layout - randomization - aslr/ (visited on
01/04/2021).

[35] Lextrait, Vincent: The Programming Languages Beacon. 2016. url: https : / / www .

mentofacturing.com/Vincent/implementations.html (visited on 12/04/2020).

25

https://linux.die.net/man/3/free
https://linux.die.net/man/1/gcc
https://linux.die.net/man/1/objdump
https://linux.die.net/man/3/scanf
https://www.jfg-nc.com/technology-in-everyday-life/
https://www.jfg-nc.com/technology-in-everyday-life/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://git.cs.uni-bonn.de/baierd/pg_ghidra_plugin
https://git.cs.uni-bonn.de/baierd/pg_ghidra_plugin/-/tree/master/Praktischer%20Teil
https://git.cs.uni-bonn.de/baierd/pg_ghidra_plugin/-/tree/master/Praktischer%20Teil
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://www.gnu.org/software/libc/manual/html_mono/libc.html
https://www.gnu.org/software/libc/manual/html_mono/libc.html
https://www.guru99.com/compiler-design-phases-of-compiler.html
https://www.guru99.com/compiler-design-phases-of-compiler.html
https://access.redhat.com/blogs/766093/posts/3548631
https://www.computerhope.com/jargon/a/al.htm
https://www.computerhope.com/jargon/d/dissembl.htm
https://resources.infosecinstitute.com/topic/basics-of-ida-pro-2/
https://resources.infosecinstitute.com/topic/basics-of-ida-pro-2/
https://encyclopedia.kaspersky.com/glossary/address-space-layout-randomization-aslr/
https://encyclopedia.kaspersky.com/glossary/address-space-layout-randomization-aslr/
https://www.mentofacturing.com/Vincent/implementations.html
https://www.mentofacturing.com/Vincent/implementations.html

References

[36] MazeGen: X86 Opcode and Instruction Reference. 2017. url: http://ref.x86asm.net/coder64.
html (visited on 01/03/2021).

[37] Megira, S ; Pangesti, A R ; Wibowo, F W: “Malware Analysis and Detection Using Reverse
Engineering Technique”. In: Journal of Physics: Conference Series 1140 (2018), p. 012042. url:
https://doi.org/10.1088/1742-6596/1140/1/012042.

[38] Merriam-Webster: Definition of reverse engineer. url: https://www.merriam-webster.com/
dictionary/reverse%20engineer (visited on 12/30/2020).

[39] NetMarketShare: Operating System Market Share. 2020. url: https://www.netmarketshare.
com/operating- system- market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%

22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%

7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%

22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%

22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%

222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%

22segments%22%3A%22-1000%22%7D (visited on 12/04/2020).

[40] Ninja, Binary: Binary Ninja Features. url: https://binary.ninja/features/ (visited on
12/30/2020).

[41] NSA: DecompilerUtils. url: https://ghidra.re/ghidra_docs/api/ghidra/app/decompiler/
component/DecompilerUtils.html (visited on 04/04/2021).

[42] NSA: Ghidra. url: https : / / www . nsa . gov / resources / everyone / ghidra/ (visited on
01/03/2021).

[43] NSA: Ghidra Official Examples. url: https://github.com/NationalSecurityAgency/ghidra/
tree / master / Ghidra / Extensions / sample / src / main / java / ghidra / examples (visited on
01/10/2021).

[44] NSA: HighFunc. url: https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/
HighFunction.html (visited on 04/04/2021).

[45] NSA: P-code Reference Manual. url: https://ghidra.re/courses/languages/html/pcoderef.
html (visited on 04/04/2021).

[46] NSA: P-code Reference Manual. url: https : / / ghidra . re / courses / languages / html /

additionalpcode.html (visited on 04/04/2021).

[47] NSA: Varnode. url: https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/
Varnode.html (visited on 04/04/2021).

[48] O’Connor, Stephen: The Importance of Medical Software in Today’s Healthcare Practices. url:
https://www.adsc.com/blog/the-importance-of-medical-software-in-todays-healthcare-

practices (visited on 12/29/2020).

[49] O’Reilly:Overview of Ghidra. url: https://www.oreilly.com/library/view/getting-started-
with/9781098115265/ch01.html (visited on 01/05/2021).

[50] Oracle: Instructions. url: https://docs.oracle.com/cd/E19120- 01/open.solaris/817-
5477/ennby/index.html (visited on 01/03/2021).

[51] Oracle: Statements. url: https://docs.oracle.com/cd/E19120- 01/open.solaris/817-
5477/eoqjt/index.html (visited on 01/03/2021).

26

http://ref.x86asm.net/coder64.html
http://ref.x86asm.net/coder64.html
https://doi.org/10.1088/1742-6596/1140/1/012042
https://www.merriam-webster.com/dictionary/reverse%20engineer
https://www.merriam-webster.com/dictionary/reverse%20engineer
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222020-04%22%2C%22dateEnd%22%3A%222020-04%22%2C%22hiddenSeries%22%3A%7B%7D%2C%22segments%22%3A%22-1000%22%7D
https://binary.ninja/features/
https://ghidra.re/ghidra_docs/api/ghidra/app/decompiler/component/DecompilerUtils.html
https://ghidra.re/ghidra_docs/api/ghidra/app/decompiler/component/DecompilerUtils.html
https://www.nsa.gov/resources/everyone/ghidra/
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Extensions/sample/src/main/java/ghidra/examples
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Extensions/sample/src/main/java/ghidra/examples
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/HighFunction.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/HighFunction.html
https://ghidra.re/courses/languages/html/pcoderef.html
https://ghidra.re/courses/languages/html/pcoderef.html
https://ghidra.re/courses/languages/html/additionalpcode.html
https://ghidra.re/courses/languages/html/additionalpcode.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/Varnode.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/Varnode.html
https://www.adsc.com/blog/the-importance-of-medical-software-in-todays-healthcare-practices
https://www.adsc.com/blog/the-importance-of-medical-software-in-todays-healthcare-practices
https://www.oreilly.com/library/view/getting-started-with/9781098115265/ch01.html
https://www.oreilly.com/library/view/getting-started-with/9781098115265/ch01.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/ennby/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/ennby/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/eoqjt/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/817-5477/eoqjt/index.html

References

[52] OWasp: Null Dereference. url: https://owasp.org/www-community/vulnerabilities/Null_

Dereference (visited on 01/04/2021).

[53] Mark Stamp Peter Stavroulakis, ed.: Handbook of Information and Communication Security.
Springer, 2010.

[54] Press, AP - Associated: German hospital hacked, patient taken to another city dies. url: https:
/ / apnews . com / article / technology - hacking - europe - cf8f8eee1adcec69bcc864f2c4308c94

(visited on 12/29/2020).

[55] Prof. Dr. Peter Martini Prof. Dr. Elmar Padilla, Martin Clauß: Lecture: Program Analysis
and Binary Exploitation. url: https://net.cs.uni-bonn.de/wg/cs/teaching/wt-202021/pabe/
(visited on 01/11/2021).

[56] Project, The Linux Documentation: Pros and Cons. url: https://tldp.org/HOWTO/Assembly-
HOWTO/x133.html#:~:text=The%20advantages%20of%20Assembly,software%20threads%20or%

20hardware%20devices (visited on 01/02/2021).

[57] Rad, Hamid: Reverse Engineering as a Learning Tool in Design Process. 2012.

[58] Raymond, Eric: The Art of UNIX Programming. Addison-Wesley, 2003.

[59] Rouse, Margaret: decompile. url: https://whatis.techtarget.com/definition/decompile
(visited on 12/31/2020).

[60] Rouse, Margaret: reverse engineering. url: https://searchsoftwarequality.techtarget.com/
definition/reverse-engineering (visited on 12/29/2020).

[61] Shortjump!: Ghidra: A quick overview for the curious. url: https://0xeb.net/2019/03/ghidra-
a-quick-overview/ (visited on 12/30/2020).

[62] Software, WhiteSource: Most secure programming languages - WhiteSource. 2020. url:
https://www.whitesourcesoftware.com/most-secure-programming-languages/ (visited on
12/04/2020).

[63] Techopedia: Low-Level Language. url: https://www.techopedia.com/definition/3933/low-
level-language (visited on 01/02/2021).

[64] TechTarget: Machine code. url: https://whatis.techtarget.com/definition/machine-code-
machine-language (visited on 01/05/2021).

[65] TechTerms: Assembler. url: https : / / techterms . com / definition / assembler (visited on
12/30/2020).

[66] TechTerms: Register. url: https : / / techterms . com / definition / register (visited on
01/03/2021).

[67] TIOBE: TIOBE Index for December 2020. 2020. url: https://www.tiobe.com/tiobe-index/
(visited on 12/04/2020).

[68] ummit, Steve: Pointer Allocation Strategies. url: https://www.eskimo.com/~scs/cclass/int/
sx7.html (visited on 01/04/2021).

[69] University, John Burkardt - Florida State: C Program Compilation. url: https://people.sc.
fsu.edu/~jburkardt/classes/isc_2012/c_program_compilation.pdf (visited on 01/02/2021).

[70] University, Weber State: Variables and Memory Addresses. url: http://icarus.cs.weber.edu/
~dab/cs1410/textbook/4.Pointers/vars_address.html (visited on 12/31/2020).

[71] Wiki, OSDev: Assembly. url: https://wiki.osdev.org/Assembly (visited on 01/03/2021).

27

https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://apnews.com/article/technology-hacking-europe-cf8f8eee1adcec69bcc864f2c4308c94
https://apnews.com/article/technology-hacking-europe-cf8f8eee1adcec69bcc864f2c4308c94
https://net.cs.uni-bonn.de/wg/cs/teaching/wt-202021/pabe/
https://tldp.org/HOWTO/Assembly-HOWTO/x133.html#:~:text=The%20advantages%20of%20Assembly,software%20threads%20or%20hardware%20devices
https://tldp.org/HOWTO/Assembly-HOWTO/x133.html#:~:text=The%20advantages%20of%20Assembly,software%20threads%20or%20hardware%20devices
https://tldp.org/HOWTO/Assembly-HOWTO/x133.html#:~:text=The%20advantages%20of%20Assembly,software%20threads%20or%20hardware%20devices
https://whatis.techtarget.com/definition/decompile
https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://0xeb.net/2019/03/ghidra-a-quick-overview/
https://0xeb.net/2019/03/ghidra-a-quick-overview/
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.techopedia.com/definition/3933/low-level-language
https://www.techopedia.com/definition/3933/low-level-language
https://whatis.techtarget.com/definition/machine-code-machine-language
https://whatis.techtarget.com/definition/machine-code-machine-language
https://techterms.com/definition/assembler
https://techterms.com/definition/register
https://www.tiobe.com/tiobe-index/
https://www.eskimo.com/~scs/cclass/int/sx7.html
https://www.eskimo.com/~scs/cclass/int/sx7.html
https://people.sc.fsu.edu/~jburkardt/classes/isc_2012/c_program_compilation.pdf
https://people.sc.fsu.edu/~jburkardt/classes/isc_2012/c_program_compilation.pdf
http://icarus.cs.weber.edu/~dab/cs1410/textbook/4.Pointers/vars_address.html
http://icarus.cs.weber.edu/~dab/cs1410/textbook/4.Pointers/vars_address.html
https://wiki.osdev.org/Assembly

List of Figures

1 Compilation model for GCC [69] . 3
2 Examples for assembly statements, in Intel Syntax 5
3 A simple slice of an execution path. On the left in normal syntax; on the right, the

syntax is transformed to SSA [55] . 7
4 Ghidra’s standard project view . 10

5 A representation of the stack frame of the function in 3.4, before and after execution
of line 5 . 15

28

List of Tables

1 Incomplete overview of differences between Intel and AT&T assembly syntax [9] . . 5

2 List of general weaknesses that the module detects, information taken from CWE [10] 13
3 List of libc functions that the module detects . 15

4 Results of analysing eval.c [26] . 22

29

Listings

2.1 An example of a simple C function that compares two integers 4
2.2 The function in 2.1, assembled . 4
2.3 The function in 2.1, 2.2 compiled to binary code . 6
2.4 An example of a function . 9
2.5 An example of a different but similar function . 9
2.6 The disassembled code of the function in 2.4 . 9
2.7 The disassembled code of the function in 2.5 . 9

3.1 Two functions with an Out-of-bounds Read vulnerability, one potential, the other
inherent . 12

3.2 Function with potential Null Pointer Dereference vulnerability 14
3.3 Function with control flow error, resulting in both potential Use After Free and

potential Double Free vulnerability . 14
3.4 Function with Buffer Overflow vulnerability . 14

4.1 An example for a function with two logically mutually exclusive statements 20

30

Statement of Authorship

I hereby confirm that the work presented in this lab report has been performed and interpreted
solely by myself except where explicitly identified to the contrary. I declare that I have used no
other sources and aids other than those indicated. This work has not been submitted elsewhere in
any other form for the fulfilment of any other degree or qualification.

Bonn, April 22, 2021
Luca Weist

31

	Introduction
	Background
	Assembly and binary code
	Reverse-engineering
	Ghidra

	Specification
	General weaknesses
	Libc functions

	Methodology
	Important helper functions
	isPointer
	getDereferencingInstructions
	reachableIf

	Analysers
	Null Pointer Dereference
	Out-of-bounds Access
	Buffer Overflow
	Use-after-free and Double Free

	Summary
	Evaluation
	Limitations / Future Work

	References
	List of Figures
	List of Tables
	Listing

